These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes.
    Author: Henry P, Pearson WL, Nichols CG.
    Journal: J Physiol; 1996 Sep 15; 495 ( Pt 3)(Pt 3):681-8. PubMed ID: 8887775.
    Abstract:
    1. The effect of protein kinase activators on cloned inward rectifier channels expressed in Xenopus oocytes was examined using a two-electrode voltage clamp. PKA activators caused no change in KIR1.1, KIR2.1, or KIR2.3 current. The PKC activators phorbol 12-myristate 14-acetate (PMA) and phorbol 12, 13-dibutyrate (PDBu) inhibited KIR2.3 currents, but not KIR2.1 or KIR1.1 current. This inhibition was blocked by staurosporine. An inactive phorbol ester, 4 alpha-phorbol 12, 13-didecanoate (4 alpha-PDD), had no effect on KIR2.3. 2. Upon changing solution from 2 to 98 microM K+, KIR2.3 but not KIR1.1 or KIR2.1 currents typically 'ran down' over 5 min to 60-80% of maximum amplitude. Rundown occurred even if PMA was applied before changing to high [K+] solution, indicating that rundown was independent of PKC activity. Rundown was evoked by substituting NMG+ for Na+, showing that it results from low [Na+] and not from high [K+]. 3. These results suggest that KIR2.3, but not KIR1.1 or KIR2.1, is subject to regulation, both by PKC activation and as a consequence of low [Na+]o. The difference in secondary regulation may account for specific responses to PKC stimulation of tissues expressing otherwise nearly identical KIR channels.
    [Abstract] [Full Text] [Related] [New Search]