These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphatidylinositol 3-kinase is necessary and sufficient for insulin-stimulated stress fiber breakdown. Author: Martin SS, Rose DW, Saltiel AR, Klippel A, Williams LT, Olefsky JM. Journal: Endocrinology; 1996 Nov; 137(11):5045-54. PubMed ID: 8895379. Abstract: Rat-1 fibroblasts overexpressing the human insulin receptor undergo rapid actin rearrangement in response to insulin. Breakdown of stress fibers present in quiescent cells is followed by transient membrane ruffling and a return of stress fibers. We investigated the signaling pathways that mediate this insulin-stimulated reorganization of the actin cytoskeleton, which was visualized with rhodamine-phalloidin. Treatment of cells with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor wortmannin prevented insulin action at the preliminary step of stress fiber breakdown. Cellular microinjection of a polyclonal antibody directed against the p85 subunit of PI3-kinase as well as a purified recombinant p85-SH2 domain protein also inhibited actin reorganization. Transient expression of a constitutively active form of PI3-kinase (p110*) was sufficient to cause both stress fiber breakdown and membrane ruffling in the absence of insulin. Microinjection of a polyclonal anti-Shc antibody or dominant negative N17-Ras protein did not affect actin dynamics, and although constitutively active V12-Ras caused modest cytoskeletal reorganization, this effect was blocked by pretreatment with wortmannin. In summary, activation of PI3-kinase is necessary and sufficient to stimulate actin rearrangement, indicating that PI3-kinase may initiate the only signaling cascade required for insulin to induce cytoskeletal restructuring.[Abstract] [Full Text] [Related] [New Search]