These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Author: Leyssens A, Nowicky AV, Patterson L, Crompton M, Duchen MR.
    Journal: J Physiol; 1996 Oct 01; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200.
    Abstract:
    1. As ATP has a higher affinity for Mg2+ than ADP, the cytosolic magnesium concentration rises upon ATP hydrolysis. We have therefore used the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgG) to provide an index of changing ATP concentration in single rat cardiomyocytes in response to altered mitochondrial state. 2. In response to FCCP, [Mg2+]i rose towards a plateau coincident with the progression to rigor, which signals ATP depletion. Contamination of the MgG signal by changes in intracellular free Ca2+ concentration (the KD of MgG for Ca2+ is 4.7 microM) was excluded by simultaneous measurement of [Ca2+]i and [Mg2+]i in cells dual loaded with fura-2 and MgG. The response to FCCP was independent of external Mg2+, confirming an intracellular source for the rise in [Mg2+]i. 3. Simultaneous measurements of mitochondrial NAD(P)H autofluorescence and mitochondrial potential (delta psi m; .-1 fluorescence) and of autofluorescence and MgG allowed closer study of the relationship between [Mg2+]i and mitochondrial state. Oligomycin abolished the FCCP-induced rise in [Mg2+]i without altering the change in autofluorescence. Thus, the rise in [Mg2+]i in response to FCCP is consistent with the release of intracellular Mg2+ following ATP hydrolysis by the mitochondrial F1F0-ATPase. 4. The rise in [Mg2+]i was correlated with cell-attached recordings of ATP-sensitive K+ channel (KATP) activity. In response to FCCP, an increase in KATP channel activity was seen only as [Mg2+]i reached a plateau. In response to blockade of mitochondrial respiration and glycolysis with cyanide (CN-) and 2-deoxyglucose (DOG), [Mg2+]i rose more slowly but again KATP channel opening increased only when [Mg2+]i reached a plateau and the cells shortened. 5. Oligomycin decreased the rate of rise of [Mg2+]i delayed the onset of rigor and increased the rate of mitochondrial depolarization in response to CN-_DOG. Thus, with blockade of mitochondrial respiration delta psi m is maintained by the mitochondrial F1F0-ATPase at the expense of ATP reserves. 6. In response to CN-_DOG, the initial rise in [Mg2+]i was accompanied by a small rise in [Ca2+]i. After [Mg2+]i reached a plateau and rigor developed, [Ca2+]i rose progressively. On reperfusion, in hypercontracted cells, [Ca2+]i recovered before [Mg2+]i and [ca2+]i oscillations were sustained while [Mg2+]i decreased. Thus on reperfusion, full recovery of [ATP]i is slow, but the activation of contractile elements and the restoration of [Ca2+]i does not require the re-establishment of millimolar concentrations of ATP.
    [Abstract] [Full Text] [Related] [New Search]