These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of adhesion and cytoskeletal integrity on fibroblast traction.
    Author: Thoumine O, Ott A.
    Journal: Cell Motil Cytoskeleton; 1996; 35(3):269-80. PubMed ID: 8913646.
    Abstract:
    Cellular contractility plays an important role in cell morphogenesis and tissue pattern formation. In this context, we examined how the expression of cell traction depends on cell-to-substrate contacts and cytoskeletal organization. Qualitative observation of chick fibroblasts cultured on an elastic film of polydimethylsiloxane indicated a strong spatial relationship between wrinkle pattern and distribution of actin stress fibers and focal contacts. In order to further characterize cell contractility, the projected area of Triton-permeabilized fibroblasts upon ATP-induced retraction was measured in various conditions of substrate adhesivity, cytoskeletal perturbation, and temperature. In all conditions, the relationship between degree of cell retraction and ATP concentration was well described by the laws of enzyme kinetics. Culturing cells on a gelatin-coated substrate, decreasing the temperature, using phosphate ribonucleotides other than ATP, and treating cells with cytochalasin D all diminished the rate of cell retraction, indicating that fibroblast traction is generated by a temperature- and ATP-dependent actin/myosin stress fiber sliding mechanism, transmitted to the substrate through focal adhesions. Treatment of cells with either nocodazole or taxol did not affect retraction of permeabilized fibroblasts upon stimulation with ATP, suggesting that microtubules do not directly resist cell traction. Treatment of cells with vanadate increased cell retraction, suggesting that intermediate filaments help transmit tension.
    [Abstract] [Full Text] [Related] [New Search]