These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca(2+)-induced rebound potentiation of gamma-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II.
    Author: Kano M, Kano M, Fukunaga K, Konnerth A.
    Journal: Proc Natl Acad Sci U S A; 1996 Nov 12; 93(23):13351-6. PubMed ID: 8917594.
    Abstract:
    In cerebellar Purkinje neurons, gamma-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission undergoes a long-lasting "rebound potentiation" after the activation of excitatory climbing fiber inputs. Rebound potentiation is triggered by the climbing-fiber-induced transient elevation of intracellular Ca2+ concentration and is expressed as a long-lasting increase of postsynaptic GABAA receptor sensitivity. Herein we show that inhibitors of the Ca2+/calmodulin-dependent protein kinase II (CaM-KII) signal transduction pathway effectively block the induction of rebound potentiation. These inhibitors have no effect on the once established rebound potentiation, on voltage-gated Ca2+ channel currents, or on the basal inhibitory transmission itself. Furthermore, a protein phosphatase inhibitor and the intracellularly applied CaM-KII markedly enhanced GABA-mediated currents in Purkinje neurons. Our results demonstrate that CaM-KII activation and the following phosphorylation are key steps for rebound potentiation.
    [Abstract] [Full Text] [Related] [New Search]