These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamate-dependent mechanisms in the induction of a calcium long-term potentiation-like phenomenon. Author: Sagratella S, Scotti de Carolis A, Domenici MR, Lorenzini P, Fortuna S, Michalek H. Journal: Brain Res Bull; 1996; 41(4):193-200. PubMed ID: 8924028. Abstract: The electric synaptic efficacy, in terms of extracellular electrical potentials, and the intracellular postsynaptic efficacy, in terms of inositol phosphate (IP) accumulation, were evaluated in rat hippocampal slices exposed for a brief period (10 min) to a high concentration of calcium (+2.7 mM). In addition, the effects of N-methyl-D-asparate (NMDA) ionotropic and metabotropic glutamate receptor (mGluR) antagonists on the induction and the establishment or maintenance of enhanced synaptic efficacy of CA1 pyramidal neurons due to high-calcium exposure were also tested. Elevation of the calcium concentration from 1.3-4 mM in the medium bathing hippocampal slices produced a long-lasting (80 over 90 min) increase in the slope of the CA1 somatic excitatory postsynaptic potential and the amplitude of the population spike (PS). Slice perfusion with NMDA antagonists cyclazocine and cis-4-phosphonomethyl-2-piperidine-carboxylic acid (CGS 19755) or with mGluR antagonists L-2-amino-3-phosphonopropionic acid (AP3) or alpha-methyl-4-carboxyphenyl-glycine (all 0.1 mM), during the 10-min period of exposure to high-calcium prevented the induction of such changes. By contrast, slice perfusion with the same concentration of CGS 19755 or L-AP3 did not affect the already established long-lasting increase in amplitude of CA1 PS induced by high-calcium. Moreover, high-calcium failed to produce any significant modification of the basal IP accumulation or of the IP accumulation elicited by mGluR agonist 1S,3R-trans-amino cyclo-pentane-1,3-dicarboxylic acid (ACPD). In conclusion, the results confirm that high-calcium induces a long-lasting increase in synaptic efficacy in rat hippocampal slices. Both NMDA ionotropic and mGluR receptors are involved in the induction, but not in the maintenance, of this phenomenon. In line with these data no modifications of basal or ACPD-induced phosphoinositide hydrolysis have been found during the maintenance stage.[Abstract] [Full Text] [Related] [New Search]