These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional regulation of hepatic sterol 27-hydroxylase by bile acids.
    Author: Vlahcevic ZR, Jairath SK, Heuman DM, Stravitz RT, Hylemon PB, Avadhani NG, Pandak WM.
    Journal: Am J Physiol; 1996 Apr; 270(4 Pt 1):G646-52. PubMed ID: 8928794.
    Abstract:
    The study objective was to determine whether and to what extent sterol 27-hydroxylase, the initial step in the "acidic" pathway of bile acid biosynthesis, is regulated by bile acids. Rats were fed diets supplemented with cholestyramine (CT, 5%), cholate (CA, 1%), chenodeoxycholate (CDCA, 1%), or deoxycholate (DCA, 0.25%). When compared with paired controls, sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase specific activities increased after CT administration by 188 +/- 20% (P < 0.05) and 415 +/- 36% (P < 0.01), respectively. Similarly, mRNA levels increased by 159 +/- 14% (P < 0.05) and 311 +/- 106% (P < 0.05), respectively. Feeding CA, CDCA, or DCA decreased sterol 27-hydroxylase specific activity to 57 +/- 6, 61 +/- 8, and 74 +/- 8% of controls, respectively (P < 0.05). By comparison, the specific activity of cholesterol 7 alpha-hydroxylase decreased to 46 +/- 7 , 32 +/- 10, and 26 +/- 8% (P = 0.001). mRNA levels and transcriptional activities for sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase transcriptional activity were changed to the same extent as the specific activities after CT or bile acid feeding. We conclude that sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase are subject to negative feedback regulation by hydrophobic bile acids at the level of transcription. However, the responses of sterol 27-hydroxylase to manipulation of the bile acid pool are less prominent than those of cholesterol 7 alpha-hydroxylase. During the diurnal cycle the specific activities of sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase changed in tandem, suggesting that both may be under control of glucocorticoids.
    [Abstract] [Full Text] [Related] [New Search]