These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide release in rat skeletal muscle capillary.
    Author: Mitchell D, Tyml K.
    Journal: Am J Physiol; 1996 May; 270(5 Pt 2):H1696-703. PubMed ID: 8928876.
    Abstract:
    Nitric oxide (NO) has been shown to be a potent vasodilator released from endothelial cells (EC) in large blood vessels, but NO release has not been examined in the capillary bed. Because the capillary bed represents the largest source of EC, it may be the largest source of vascular NO. In the present study, we used intravital microscopy to examine the effect of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on the microvasculature of the rat extensor digitorum longus muscle. L-NAME (30 mM) applied locally to a capillary (300 micron(s) from the feeding arteriole) reduced red blood cell (RBC) velocity [VRBC; control VRBC = 238 +/- 58 (SE) micron/s; delta VRBC = -76 +/- 8%] and RBC flux (4.4 +/- 0.7 to 2.8 +/- 0.7 RBC/s) significantly in the capillary, but did not change feeding arteriole diameter (Dcon = 6.3 +/- 0.7 micron, delta D = 5 +/- 7%) or draining venule diameter (Dcon = 10.1 +/- 0.6 micron, delta D = 4 +/- 2%). Because of the VRBC change, the flux reduction was equivalent to an increased local hemoconcentration from 1.8 to 5 RBCs per 100 micron capillary length. L-NAME also caused an increase in the number of adhering leukocytes in the venule from 0.29 to 1.43 cells/100 micron. L-NAME (30 mM) applied either to arterioles or to venules did not change capillary VRBC. Bradykinin (BK) locally applied to the capillary caused significant increases in VRBC (delta VRBC = 111 +/- 23%) and in arteriolar diameter (delta D = 40 +/- 5%). This BK response was blocked by capillary pretreatment with 30 mM L-NAME (delta VRBC = -4 +/- 27%; delta D = 5 +/- 9% after BK). We concluded that NO may be released from capillary EC both basally and in response to the vasodilator BK. We hypothesize that 1) low basal levels of NO affect capillary blood flow by modulating local hemoconcentration and leukocyte adhesion, and 2) higher levels of NO (stimulated by BK) may cause a remote vasodilation to increase microvascular blood flow.
    [Abstract] [Full Text] [Related] [New Search]