These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms of zinc uptake in gills of freshwater rainbow trout: interplay with calcium transport. Author: Hogstrand C, Verbost PM, Bonga SE, Wood CM. Journal: Am J Physiol; 1996 May; 270(5 Pt 2):R1141-7. PubMed ID: 8928918. Abstract: The uptake mechanism of Zn2+ through the gill epithelium of freshwater rainbow trout was investigated both in intact animals and in isolated basolateral membranes. Involvement of the apical Ca2+ uptake sites in Zn2+ uptake was examined in vivo by pharmacological manipulation of the apical Ca2+ permeability. The apical entries of Ca2+ and Zn2+, but not Na2+ and Cl-, were inhibited by addition of La to the water. Addition of 1.0 microM La reduced the influxes of Ca2+ and Zn2+ to 22 +/- 3 and 53 +/- 7% (mean +/- SE) of the control value, respectively. Injection of CaCl2 also reduced the branchial influxes of Ca2+ and Zn2+. This treatment decreased the influx of Ca2- to 45 +/- 4% of the control level and the Zn2+ influx to 68 +/- 5%. These results strongly imply that Zn2+ passes across the apical membrane of the chloride cells of the gills via the same pathway as Ca2+. The presence of an active basolateral transporter for Zn2+ was investigated in vitro on isolated basolateral membranes. There was no ATP-dependent or Na2+(-)gradient driven transport of Zn2+ at physiological Zn2+ activities. The same system was used to study potential effects of Zn2+ on the basolateral Ca2+(-)adenosinetri-phosphatase. Zn2+ was found to be a potent blocker of this transporter, causing a mixed inhibitory effect on the ATP driven Ca2+ transport at a free Zn2+ activity of 100 pM.[Abstract] [Full Text] [Related] [New Search]