These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: kappa-opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, development, and the antiproliferative effect of opioids.
    Author: Gurwell JA, Duncan MJ, Maderspach K, Stiene-Martin A, Elde RP, Hauser KF.
    Journal: Brain Res; 1996 Oct 21; 737(1-2):175-87. PubMed ID: 8930364.
    Abstract:
    To assess the role of kappa-opioid receptors in astrocyte development, the effect of kappa-agonists on the growth of astroglia derived from 1-2-day-old mouse cerebra was examined in vitro. kappa-Opioid receptor expression was assessed immunocytochemically (using KA8 and KOR1 antibodies), as well as functionally by examining the effect of kappa-receptor activation on intracellular calcium ([Ca2+]i) homeostasis and DNA synthesis. On days 6-7, as many as 50% of the astrocytes displayed kappa-receptor (KA8) immunoreactivity or exhibited increases in [Ca2+]i in response to kappa-agonist treatment (U69,593 or U50,488H). Exposure to U69,593 (100 nM) for 72 h caused a significant reduction in number and proportion of glial fibrillary acidic protein-immunoreactive astrocytes incorporating bromodeoxyuridine (BrdU) that could be prevented by co-administering the kappa-antagonist, nor-binaltorphimine (300 nM). In contrast, on day 14, only 5 or 14%, respectively, of the astrocytes were kappa-opioid receptor (KA8) immunoreactive or displayed functional increases in [Ca2+]i. Furthermore, U69,593 (100 nM) treatment failed to inhibit BrdU incorporation at 9 days in vitro. Experimental manipulations showed that kappa-receptor activation increases astroglial [Ca2+]i both through influx via L-type channels and through mobilization of intracellular stores (which is an important Ca2+ signaling pathway in cell division). Collectively, these results indicate that a subpopulation of developing astrocytes express kappa-opioid receptors in vitro, and suggest that the activation of kappa-receptors mobilizes [Ca2+]i and inhibits cell proliferation. Moreover, the proportion of astrocytes expressing kappa-receptors was greatest during a period of rapid cell growth suggesting that they are preferentially expressed by proliferating astrocytes.
    [Abstract] [Full Text] [Related] [New Search]