These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases. Author: Welfle K, Misselwitz R, Politz O, Borriss R, Welfle H. Journal: Protein Sci; 1996 Nov; 5(11):2255-65. PubMed ID: 8931144. Abstract: Thermostability and unfolding behavior of the wild-type (1,3-1,4)-beta-glucanases from Bacillus macerans (MAC) and Bacillus amyloliquefaciens (AMY) and of two hybrid enzymes H(A12-M) delta F14 and H(A12-M) delta Y13F14A were studied by spectroscopic and microcalorimetric measurements. H(A12-M) delta F14 is constructed by the fusion of 12 N-terminal amino acids of AMY with amino acids 13-214 of MAC, and by deletion of F14. In H(A12-M) delta Y13F14A, the N-terminal region of MAC is exchanged against the AMY sequence, Y13 is deleted, and Phe 14 is exchanged against Ala. The sequence of the N-terminal loop region from Pro 9 to amino acid 16 (or 17) is very important for the properties of the enzymes and influences the effects of Ca2+ ions on the thermostability and unfolding behavior of the enzymes. The half transition temperatures T(m) are higher in the presence of Ca2+ than in Ca2+ free buffer. Furthermore, the unfolding mechanism is influenced by Ca2+. In Ca(2+)-free buffer, MAC, H(A12-M) delta F14 and H(A12-M) delta Y13F14A unfold in a single cooperative transition from the folded state to the unfolded state, whereas for AMY, a two-step unfolding was found. In the presence of Ca2+, the two-step unfolding of AMY is strengthened. Furthermore, for H(A12-M) delta F14, a two-step unfolding is induced by Ca2+. These data indicate a two-domain structure of AMY and H(A12-M) delta F14, in the presence of Ca2+. Thus, point mutations in a peripheral loop region are decisive for thermal stabilities and unfolding mechanisms of the studied glucanases in the presence of Ca2+.[Abstract] [Full Text] [Related] [New Search]