These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis.
    Author: Saeki K, Sutoh K, Wakabayashi T.
    Journal: Biochemistry; 1996 Nov 19; 35(46):14465-72. PubMed ID: 8931542.
    Abstract:
    To identify tropomyosin-binding site(s) on the surface of actin molecule, we examined the effect of mutagenesis introduced to subdomain 4 of actin. Because the sequence of Gln228-Ser232 of Dictyostelium actin differs from that of Tetrahymena actin that does not bind tropomyosin, the Dictyostelium/Tetrahymena chimeric actin was produced. Also, Lys238 and Glu241 were replaced with alanine (mutant 645) to study the role of charged residues which are located at both ends of a beta-sheet. As a control experiment, a negative charge was introduced near to the N-terminus (mutant 663). To facilitate the separation of mutant actins without affecting the normal function, Glu360 was replaced with histidine. As a control mutant to such mutants, the mutant 647 (E360H) was produced. Mutant actins were expressed in Dictyostelium cells. All mutant actins were functional: they (i) polymerize and (ii) activate ATPase activity of rabbit skeletal myosin subfragment-1 (S1). The mutant 663 (G2E) showed tropomyosin binding and activated myosin ATPase almost as well as rabbit skeletal actin. However, the tropomyosin binding of the mutant 645 (K238A/E241A/E360H) became magnesium dependent. The chimeric actin (mutant 646: QTAAS-to-KAYKE replacement and E360H) showed decreased tropomyosin binding even in the presence of magnesium ions. These results indicate that the tropomyosin-binding sites of "on"-state actin are on subdomain 4. Surprisingly, the chimeric actin showed more cooperative calcium regulation than rabbit skeletal actin in the presence of tropomyosin-troponin. The mutant actin 645 can hardly activate S1 ATPase irrespective of calcium concentration in the presence of tropomyosin-troponin, even though this actin by itself can activate S1 ATPase. The steric blocking or cooperative/allosteric mechanism of thin filament regulation is discussed.
    [Abstract] [Full Text] [Related] [New Search]