These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation.
    Author: Constantinides PP, Welzel G, Ellens H, Smith PL, Sturgis S, Yiv SH, Owen AB.
    Journal: Pharm Res; 1996 Feb; 13(2):210-5. PubMed ID: 8932438.
    Abstract:
    PURPOSE: Water-in-oil (w/o) microemulsions have been developed which, in addition to non-ionic medium-chain glycerides, incorporate ionic lipids, primarily medium-chain fatty acids, such as caprylic (C8) capric (C10) and lauric (C12) acids and their corresponding sodium salts. The absorption enhancing activity of w/o microemulsions incorporating these lipids was evaluated in the rat using Calcein (MW = 623) a water-soluble and poorly absorbed marker molecule. METHODS: Phase diagrams were constructed where C8/C10 or C12 fatty acids were treated as lipophilic surfactants and their sodium salts as hydrophilic ones. The anesthetised rat model was employed to evaluate Calcein absorption upon a single intraduodenal administration from a solution and the various w/o microemulsions. RESULTS: A wide range of clear and transparent w/o microemulsions were obtained at ambient temperature either in liquid or solid form when a fixed blend of medium chain fatty acid/salt was titrated by a fixed ratio of the oil containing the oil-soluble mono- and diglycerides and deionized water or physiological saline. Upon intraduodenal administration in the anesthetised rat, the absorption of Calcein was improved from about 2% in aqueous solution up to about 37% in w/o microemulsions. Solid and liquid formulations were equally effective in improving bioavailability. The absorption enhancement activity of the fatty acids/salts followed the order C8 approximately C10 > C12. Absorption enhancement of Calcein was significantly reduced in the absence or presence of low levels of C8/C10 mono-/diglycerides. CONCLUSIONS: These results further support the use of medium-chain glycerides and fatty acids/salts in microemulsion formulations to improve intestinal absorption of water-soluble compounds.
    [Abstract] [Full Text] [Related] [New Search]