These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase. Author: Greene TW, Woodbury RL, Okita TW. Journal: Plant Physiol; 1996 Nov; 112(3):1315-20. PubMed ID: 8938421. Abstract: As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP.[Abstract] [Full Text] [Related] [New Search]