These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase.
    Author: Didichenko SA, Tilton B, Hemmings BA, Ballmer-Hofer K, Thelen M.
    Journal: Curr Biol; 1996 Oct 01; 6(10):1271-8. PubMed ID: 8939574.
    Abstract:
    BACKGROUND: Phosphoinositide 3-kinase (PI 3-kinase) activity is required for mitogenic signaling and for secretory responses. Cell activation is presumed to cause the translocation of PI 3-kinase from the cytosol to the plasma membrane where the kinase interacts with its substrate phosphatidylinositol (4,5)-bisphosphate. Thus, a membrane-targeted and therefore constitutively active kinase could help elucidate the role of PI 3-kinase in intracellular signaling. RESULTS: The membrane-targeting sequence of Ha-Ras, containing the consensus sequence for palmitoylation and farnesylation, was fused to the carboxyl terminus of p110 alpha, the catalytic subunit of PI 3-kinase. The lipid anchor directed PI 3-kinase to the membrane and led to constitutively elevated phosphatidylinositol (3,4,5)-trisphosphate levels in transfected cells. Expression of membrane-targeted PI 3-kinase resulted in the continuous activation of downstream effectors, such as protein kinase B (PKB, also known as Akt/RAC), which was recently shown to regulate glycogen synthase kinase-3. The constitutive activation of PKB was abolished by the specific PI 3-kinase inhibitor wortmannin, and PKB activation was marginal in transfectants expressing non-membrane-targeted PI 3-kinase. Multiple phosphorylation of the cytosolic factor p47phox is required for the rapid assembly of the phagocyte NADPH oxidase upon stimulation with agonists of G-protein-coupled receptors. We show here that the expression of membrane-targeted PI 3-kinase in the monoblastic cell line GM-1 results in a wortmannin-sensitive continuous phosphorylation of p47phox. CONCLUSIONS: Targeting of PI 3-kinase to the site of its preferred substrate leads to constitutive stimulus-independent enhanced catalysis and is sufficient to regulate different signal transduction pathways.
    [Abstract] [Full Text] [Related] [New Search]