These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of sialyl Lewis X expression and E-selectin-mediated cell adhesion in cultured human lymphoid cells by transfection of antisense cDNA of an alpha1-->3 fucosyltransferase (Fuc-T VII).
    Author: Hiraiwa N, Dohi T, Kawakami-Kimura N, Yumen M, Ohmori K, Maeda M, Kannagi R.
    Journal: J Biol Chem; 1996 Dec 06; 271(49):31556-61. PubMed ID: 8940172.
    Abstract:
    The antisense cDNA approach was used to identify the endogenous fucosyltransferase species responsible for synthesis of the sialyl Lewis X (NeuAcalpha2-->3 Galbeta1-->4[Fucalpha1-->3]GlcNAcbeta1-->R) determinant in human lymphoid cells. The cultured human adult T-cell leukemia cell line, ED40515-N, expressed the message of alpha1-->3 fucosyltransferase (Fuc-T) IV and VII, with a low level of the Fuc-T III and VI message, and manifested the sialyl Lewis X as well as Lewis X (Galbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R) determinant at the cell surface. Transfection of this cell line with the pRc/CMV vector containing an antisense human Fuc-T VII construct (pRc/CMV/5'FT7AS) resulted in a significant decrease of endogenous Fuc-T VII message and a marked reduction in the cell surface expression of sialyl Lewis X determinant as well as a reduction in the enzymatic activity of alpha1-->3 fucosyltransferase against sialylated type 2 chain substrate. This was accompanied by diminution of cell adhesive activity toward E-selectin on interleukin-1beta-treated endothelial cells. These results indicated that the synthesis of the sialyl Lewis X determinants that were functionally active as E-selectin ligands was mainly mediated by Fuc-T VII in these lymphoid cells. On the other hand, the message of Fuc-T IV showed no significant change in the transfectant clones, and the surface expression of the Lewis X antigen as well as the enzymatic activity of alpha1-->3 fucosyltransferase against non-sialylated type 2 chain substrate was well preserved. The clear contrast between the diminished expression of sialyl Lewis X and the conserved manifestation of Lewis X in the transfectant clones suggested that the synthesis of sialyl Lewis X and that of Lewis X are independently regulated by different fucosyltransferases in human lymphoid cells. Fuc-T VII must be involved in the synthesis of sialyl Lewis X, while the synthesis of Lewis X is mediated by an enzyme other than Fuc-T VII, most probably Fuc-T IV.
    [Abstract] [Full Text] [Related] [New Search]