These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes.
    Author: McKenna MC, Tildon JT, Stevenson JH, Huang X.
    Journal: Dev Neurosci; 1996; 18(5-6):380-90. PubMed ID: 8940609.
    Abstract:
    Studies from several groups have provided evidence that glutamate and glutamine are metabolized in different compartments in astrocytes. In the present study we measured the rates of 14CO2 production from U-[14C]glutamate and U-[14C]glutamine, and utilized both substrate competition experiments and the transaminase inhibitor aminooxyacetic acid (AOAA) to obtain more information about the compartmentation of these substrates in cultured rat brain astrocytes. The rates of oxidation of 1 mM glutamine and glutamate were 26.4 +/- 1.4 and 63.0 +/- 7.4 nmol/h/mg protein, respectively. The addition of 1 mM glutamate decreased the rate of oxidation of glutamine to 26.3% of the control rate, demonstrating that glutamate can effectively compete with the oxidation of glutamine by astrocytes. In contrast, the addition of 1 mM glutamine had little or no effect on the rate of oxidation of glutamate by astrocytes, demonstrating that the glutamate produced intracellularly from exogenous glutamine does not dilute the glutamate taken up from the media. The addition of 5 mM AOAA decreased the rate of 14CO2 production from glutamine to 29.2% of the control rate, consistent with earlier studies by our group. The addition of 5 mM AOAA decreased the rate of oxidation of concentrations of glutamate < or = 0.1 mM by approximately 50%, but decreased the oxidation of 0.5-1 mM glutamate by only approximately 20%, demonstrating that a substantial portion of glutamate enters the tricarboxylic acid (TCA) cycle via glutamate dehydrogenase (GDH) rather than transamination, and that as the concentration of glutamate increases the relative proportion entering the TCA cycle via GDH also increases. To determine if the presence of an amino group acceptor (i.e. a ketoacid) would increase the rate of metabolism of glutamate, pyruvate was added in some experiments. Addition of 1 mM pyruvate increased the rate of oxidation of glutamate, and the increase was inhibited by AOAA, consistent with enhanced entry of glutamate into the TCA cycle via transamination in the presence of pyruvate. Enzymatic studies showed that pyruvate increased the activity of mitochondrial aspartate aminotransferase (AAT). Overall, the data demonstrate that glutamate formed intracellularly from glutamine enters the TCA cycle primarily via transamination, but does not enter the same TCA cycle compartment as glutamate taken up from the extracellular milieu. In contrast, extracellular glutamate enters the TCA cycle in astrocytes via both transamination and GDH, and can compete with, or dilute, the oxidation of glutamate produced intracellularly from glutamine.
    [Abstract] [Full Text] [Related] [New Search]