These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immune response to type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine. Author: Kasper DL, Paoletti LC, Wessels MR, Guttormsen HK, Carey VJ, Jennings HJ, Baker CJ. Journal: J Clin Invest; 1996 Nov 15; 98(10):2308-14. PubMed ID: 8941648. Abstract: Group B Streptococcus (GBS) is an important perinatal pathogen. Because transplacentally acquired maternal antibodies to the GBS capsular polysaccharides (CPS) confer protection, prevention of infant disease may be possible after immunization of women. Unfortunately, the purified CPS of GBS are only variably immunogenic in adults; therefore to enhance immunogenicity we have designed and developed a CPS-protein conjugate vaccine. The lability of a conformationally dependent epitope on the III CPS containing a critical sialic acid residue was important to consider in vaccine design. 100 women were randomized to receive GBS type III CPS-tetanus toxoid conjugate (III-TT) vaccine at one of three doses; unconjugated GBS type III CPS; or saline. Serum samples were obtained before immunization and 2, 4, 8, and 26 wk thereafter, and specific antibody to type III CPS was measured. Vaccines were well tolerated. In sera from recipients of the highest dose of III-TT, CPS-specific IgG levels rose from a geometric mean of 0.09 microg/ml before immunization to 4.53 microg/ml 8 wk later, whereas levels in recipients of unconjugated type III CPS rose from 0.21 microg/ml to 1.41 microg/ml. Lower doses resulted in lower antibody levels. A > or = 4-fold rise in antibody concentration was achieved in 90% of recipients of III-TT compared with 50% of those that received III CPS (P = 0.0015). Antibodies evoked by the conjugate vaccine recognized a conformationally dependent epitope of the III-CPS, promoted opsonophagocytosis and killing of GBS, and, after maternal immunization, protected neonatal mice from lethal challenge with type III GBS. We conclude that directed coupling of type III GBS polysaccharide to a carrier protein yielded a conjugate vaccine with preserved expression of a highly labile conformational epitope involving sialic acid and enhanced immunogenicity compared with uncoupled CPS.[Abstract] [Full Text] [Related] [New Search]