These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Author: Burg MB, Kwon ED, Peters EM. Journal: Kidney Int Suppl; 1996 Dec; 57():S100-4. PubMed ID: 8941929. Abstract: Renal medullary cells contain large quantities of organic osmolytes when the levels of salt and urea in renal medullary interstitial fluid are high. Two of these osmolytes, betaine and glycerophosphocholine (GPC), are methylamines. Methylamines generally counteract the perturbing effects of urea on enzymes and other macromolecules. Betaine was previously shown to counteract the effect of urea on enzymes in vitro and to protect renal cells in tissue culture from harmful effects of high urea. Nevertheless, renal medullary cells in vivo and in tissue culture specifically accumulate GPC rather than betaine, in response to high urea. In the present studies we tested directly whether GPC counteracts the effect of urea on the Km of pyruvate kinase (PK) for ADP and compared the effectiveness in this regard of GPC to that of betaine. We find that urea increases the Km (as previously observed), that betaine and GPC decrease it, and that the increase caused by urea is counteracted by betaine or by GPC. The effects of GPC are slightly less than those of betaine. In addition, other renal medullary organic osmolytes (namely sorbitol, inositol and taurine) were already known to be compatible osmolytes whose accumulation protects renal medullary cells from hypertonicity because they have little effect on enzyme function. In agreement with this generalization we find that high sorbitol or inositol has little or no effect on PK activity, but surprisingly that taurine reduces Vmax and greatly elevates Km. In conclusion, the main finding is direct evidence that GPC is a counteracting osmolyte, which explains its accumulation in response to high urea. However, we do not find that GPC is a more effective counteracting osmolyte than betaine, which leaves unexplained the preference of renal cells for GPC over betaine for counteracting the perturbing effect of urea.[Abstract] [Full Text] [Related] [New Search]