These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes.
    Author: van Leeuwen JE, Kearse KP.
    Journal: Proc Natl Acad Sci U S A; 1996 Nov 26; 93(24):13997-4001. PubMed ID: 8943049.
    Abstract:
    Recent evidence indicates that newly synthesized major histocompatibility complex (MHC) class I proteins interact with calnexin, a transmembrane endoplasmic reticulum protein specific for certain glycoproteins bearing monoglucosylated glycans. Here, we studied the association of newly synthesized class I proteins with calreticulin, a soluble calnexin-related ER protein, in murine T cells. We found that, unlike calnexin-class I interactions, calreticulin assembly with class I proteins was markedly decreased in the absence of beta 2 microglobulin expression and that calreticulin associated with a subset of class I glycoforms distinct from those assembled with calnexin but similar to those bound to TAP (transporter associated with antigen processing) proteins. Finally, these studies show that deglucosylation of N-linked glycans is important for dissociation of class I proteins from both calreticulin and TAP and that the vast majority of newly synthesized class I proteins associated with calreticulin are simultaneously assembled with TAP. The data demonstrate that calnexin and calreticulin chaperones assemble with distinct MHC class I assembly intermediates in the ER and show that glycan processing is functionally coupled to release of MHC class I proteins from peptide transport molecules.
    [Abstract] [Full Text] [Related] [New Search]