These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling.
    Author: Roe MW, Worley JF, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM, Blair N, Lancaster ME, McIntyre MS, Shehee WR, Dukes ID, Philipson LH.
    Journal: J Biol Chem; 1996 Dec 13; 271(50):32241-6. PubMed ID: 8943282.
    Abstract:
    Voltage-dependent delayed rectifier K+ channels regulate aspects of both stimulus-secretion and excitation-contraction coupling, but assigning specific roles to these channels has proved problematic. Using transgenically derived insulinoma cells (betaTC3-neo) and beta-cells purified from rodent pancreatic islets of Langerhans, we studied the expression and role of delayed rectifiers in glucose-stimulated insulin secretion. Using reverse-transcription polymerase chain reaction methods to amplify all known candidate delayed rectifier transcripts, the expression of the K+ channel gene Kv2.1 in betaTC3-neo insulinoma cells and purified rodent pancreatic beta-cells was detected and confirmed by immunoblotting in the insulinoma cells. betaTC3-neo cells were also found to express a related K+ channel, Kv3.2. Whole-cell patch clamp demonstrated the presence of delayed rectifier K+ currents inhibited by tetraethylammonium (TEA) and 4-aminopyridine, with similar Kd values to that of Kv2.1, correlating delayed rectifier gene expression with the K+ currents. The effect of these blockers on intracellular Ca2+ concentration ([Ca2+]i) was studied with fura-2 microspectrofluorimetry and imaging techniques. In the absence of glucose, exposure to TEA (1-20 mM) had minimal effects on betaTC3-neo or rodent islet [Ca2+]i, but in the presence of glucose, TEA activated large amplitude [Ca2+]i oscillations. In the insulinoma cells the TEA-induced [Ca2+]i oscillations were driven by synchronous oscillations in membrane potential, resulting in a 4-fold potentiation of insulin secretion. Activation of specific delayed rectifier K+ channels can therefore suppress stimulus-secretion coupling by damping oscillations in membrane potential and [Ca2+]i and thereby regulate secretion. These studies implicate previously uncharacterized beta-cell delayed rectifier K+ channels in the regulation of membrane repolarization, [Ca2+]i, and insulin secretion.
    [Abstract] [Full Text] [Related] [New Search]