These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Loss of either CD4+ or CD8+ T cells does not affect the magnitude of protective immunity to an intracellular pathogen, Francisella tularensis strain LVS.
    Author: Yee D, Rhinehart-Jones TR, Elkins KL.
    Journal: J Immunol; 1996 Dec 01; 157(11):5042-8. PubMed ID: 8943413.
    Abstract:
    Normal mice readily survive a sublethal intradermal (i.d.) infection with Francisella tularensis live vaccine strain (LVS), a model intracellular bacterium, and are strongly protected against subsequent lethal challenge. However, athymic nu/nu mice, which lack mature alphabeta TCR+ T lymphocytes, succumb to i.d. infection within 30 days. Here we characterize the alphabeta T cell subpopulations necessary for both resolution of i.d. infection and generation of optimal protective immunity to LVS. BALB/cByJ mice treated with anti-CD4 or anti-CD8 Abs before i.d. infection survived and cleared bacteria, and anti-CD4- or anti-CD8-treated immune mice survived a very strong i.p. challenge of 10,000 LD50s. Among mutant mice with targeted gene disruptions (knockouts), CD4-, beta2-microglobulin-deficient (which are also CD8-), and gammadelta TCR- mice all resolved a large sublethal i.d. infection. All CD4- and beta2-microglobulin-deficient mice readily survived subsequent lethal i.p. challenge of 10,000 LD50s, even in the absence of specific IgG Abs, as did most (86%) gammadelta TCR- mice. In contrast, alphabeta TCR- mice or alphabeta + gammadelta TCR- mice died about 35 days after i.d. infection. Depletion of gammadelta+ T cells from alphabeta TCR- mice had no effect on mean time to death from i.d. LVS infection. Therefore alphabeta TCR+ cells are required for protection, but either CD4+ or CD8+ T cells are individually sufficient to resolve a large sublethal i.d. LVS infection and to protect against a maximal secondary lethal challenge. These results emphasize the remarkable plasticity of the alphabeta T cell response in protective immunity to intracellular bacteria.
    [Abstract] [Full Text] [Related] [New Search]