These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vesicular transport of histamine in stimulated human basophils. Author: Dvorak AM, MacGlashan DW, Morgan ES, Lichtenstein LM. Journal: Blood; 1996 Dec 01; 88(11):4090-101. PubMed ID: 8943842. Abstract: Human basophils participating in experimentally produced contact allergy display progressive secretion of electron-dense secretory granule contents and retention of cytoplasmic granule containers in the absence of entire granule extrusion, a process termed piecemeal degranulation (PMD) and postulated to be effected by vesicular transport (Dvorak HF, Dvorak AM: Clin Hematol 4:651, 1975). Proof of this hypothesis was sought using models of human basophil-stimulated secretion, partially purified human peripheral blood basophils, and a morphometric analysis of the fraction of total cellular cytoplasmic vesicles loaded with histamine, a major proinflammatory mediator present in basophil secretory granules. The subcellular localization of histamine was accomplished using a new ultrastructural enzyme-affinity-gold method based on the affinity of diamine oxidase for its substrate, histamine (Dvorak et al: J Histochem Cytochem 41:787, 1993). Two models were selected for a kinetic analysis of stimulated vesicle transport of histamine based on known biochemical and ultrastructural characteristics (MacGlashan et al: J Immunol 136:2231, 1986; Warner et al: J Leukoc Biol 45:558, 1989; Dvorak et al: Am J Pathol 141:1309, 1992; Dvorak et al: Lab Invest 64:234, 1991). These models were selected to include the rapid release reaction stimulated by the bacterial peptide, FMLP, and the slow release reaction stimulated by the phorbol diester tumor promoter, TPA. The results of this study showed that the fraction of histamine-loaded cytoplasmic vesicles (%VG/TV/micron2) in TPA-stimulated basophils significantly exceeded the fraction in unstimulated cells, a process that persisted for 45 minutes after TPA stimulation and was associated with extensive PMD and no morphologic evidence of recovery. Similarly, the fraction of histamine-loaded cytoplasmic vesicles after FMLP stimulation significantly exceeded the fraction in unstimulated cells, a process that persisted for 10 minutes after FMLP stimulation and was associated with the morphologic continuum of PMD-->anaphylactic degranulation (characterized by extrusion of granules)-->recovery, a process largely complete in the 10-minute samples. These studies establish for the first time that an important proinflammatory mediator, histamine, traffic from secretory granules to the extracellular milieu in small cytoplasmic vesicles in stimulated human basophils. The association of this process with the ultrastructural release reaction defined as PMD produced primarily by TPA and in part by FMLP establishes vesicular transport as the mechanism for effecting this type of regulated secretion. Vesicular transport of histamine was also significant in the more complex stimulated secretory and recovery model produced by exposure of human basophils to the bacterial peptide FMLP.[Abstract] [Full Text] [Related] [New Search]