These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of cytosolic and membrane-bound 5'-nucleotidases to cardiac adenosine production.
    Author: Darvish A, Pomerantz RW, Zografides PG, Metting PJ.
    Journal: Am J Physiol; 1996 Nov; 271(5 Pt 2):H2162-7. PubMed ID: 8945937.
    Abstract:
    The purpose of this study was to evaluate the relative contributions of AMP-specific cytosolic 5'-nucleotidase and ecto-5'-nucleotidase to cardiac adenosine production and its regulation by ADP and Mg2+. 5'-Nucleotidase activity was measured spectrophotometrically in the total homogenate, the 150,000-g supernatant fraction (cytosolic 5'-nucleotidase), and the membrane pellet fraction (ecto-5'-nucleotidase) of dog left ventricles. Increasing [MgCl2] over a range from 0 to 6 mmol/l increased 5'-nucleotidase activity in both the supernatant and pellet; only cytosolic 5'-nucleotidase exhibited an absolute requirement for Mg2+. ADP, (20-480 mumol/l) activated supernatant and inhibited membrane-bound 5'-nucleotidase activity. At 80 mumol/l ADP, 5 mmol/l MgCl2, 100 mumol/l AMP, and pH 7.3, the average 5'-nucleotidase activities of the supernatant vs. pellet were 74% of total and 26% of total, respectively. Total adenosine production in unfractionated samples of ventricular homogenates decreased an average of 73% by specific inhibition of cytosolic 5'-nucleotidase, using antibodies against the cytosolic enzyme, and 46% by specific inhibition of ecto-5'-nucleotidase with alpha, beta-methylene adenosine 5'-diphosphate (AOPCP). These findings support the hypotheses that 1) both cytosolic and ecto-5'-nucleotidase contribute to cardiac adenosine production in dog heart homogenates; 2) AMP-specific cytosolic 5'-nucleotidase activity exceeds ecto-5'-nucleotidase activity at physiological concentrations of ADP, AMP, and Mg2+; and 3) Mg2+ is an important regulator of cardiac adenosine production via activation of both ecto- and AMP-specific cytosolic 5'-nucleotidases.
    [Abstract] [Full Text] [Related] [New Search]