These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thyrotropin-releasing hormone stimulates perinatal rat respiration in vitro. Author: Greer JJ, al-Zubaidy Z, Carter JE. Journal: Am J Physiol; 1996 Nov; 271(5 Pt 2):R1160-4. PubMed ID: 8945949. Abstract: In the present study, we test whether thyrotropin-releasing hormone (TRH) stimulates respiratory frequency in perinatal rats by acting at regions of the medulla responsible for respiratory rhythmogenesis, the pre-Bötzinger complex. We also test whether TRH stimulates respiration in the fetal rat at a time shortly after the inception of respiratory rhythmogenesis [embryonic days (E) 17-18]. Two in vitro experimental models were utilized: the isolated brain stem-spinal cord preparation from fetal (E17-E18) and neonatal [postnatal days (P) 0-2] rats and the medullary slice preparation isolated from neonatal rats (P1-P2). Bath application of TRH caused a dose-dependent, reversible increase (maximum increase approximately 60%) in the frequency of respiratory rhythmic neural discharge generated by brain stem-spinal cord [half-maximal effective concentration (EC50) approximately 9 nM] and medullary slice (EC50 approximately 2.5 nM) neonatal rat preparations. Pressure injection of TRH unilaterally into the region of the pre-Bötzinger complex of the neonatal medullary slice caused an approximately 28% increase in the frequency of respiratory discharge. Application of TRH to the medium bathing fetal rat brain stem-spinal cord preparations caused an approximately threefold increase in respiratory discharge frequency. We conclude that TRH stimulates respiratory discharge frequency from the time near inception of respiratory motor discharge and acts directly at the pre-Bötzinger complex.[Abstract] [Full Text] [Related] [New Search]