These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alanyl-glutamine prevents muscle atrophy and glutamine synthetase induction by glucocorticoids.
    Author: Hickson RC, Wegrzyn LE, Osborne DF, Karl IE.
    Journal: Am J Physiol; 1996 Nov; 271(5 Pt 2):R1165-72. PubMed ID: 8945950.
    Abstract:
    The aims of this work were to establish whether glutamine infusion via alanyl-glutamine dipeptide provides effective therapy against muscle atrophy from glucorticoids and whether the glucocorticoid induction of glutamine synthetase (GS) is downregulated by dipeptide supplementation. Rats were given hydrocortisone 21-acetate or the dosing vehicle and were infused with alanine (AA) or alanyl-glutamine (AG) at the same concentrations and rates (1.15 mumol.min-1.100 g body wt-1, 0.75 ml/h) for 7 days. Compared with AA infusion in hormone-treated animals, AG infusion prevented total body and fast-twitch muscle mass losses by over 70%. Glucocorticoid treatment did not reduce muscle glutamine levels. Higher serum glutamine was found in the AG-infused (1.72 +/- 0.28 mumol/ml) compared with the AA-infused group (1.32 +/- 0.06 mumol/ml), but muscle glutamine concentrations were not elevated by AG infusion. Following glucocorticoid injections, GS enzyme activity was increased by two- to threefold in plantaris, fast-twitch white (superficial quadriceps), and fast-twitch red (deep quadriceps) muscle/fiber types of the AA group. Similarly, GS mRNA was elevated by 3.3- to 4.1-fold in these same muscles of hormone-treated, AA-infused rats. AG infusion diminished glucocorticoid effects on GS enzyme activity to 52-65% and on GS mRNA to 31-37% of the values with AA infusion. These results provide firsthand evidence of atrophy prevention from a catabolic state using glutamine in dipeptide form. Despite higher serum and muscle alanine levels with AA infusion than with AG infusion, alanine alone is not a sufficient stimulus to counteract muscle atrophy. The AG-induced muscle sparing is accompanied by diminished expression of a glucocorticoid-inducible gene in skeletal muscle. However, glutamine regulation of GS appears complex and may involve more regulators than muscle glutamine concentration alone.
    [Abstract] [Full Text] [Related] [New Search]