These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Author: Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, de Jong A, Venema G, Bron S, van Dijl JM. Journal: Mol Microbiol; 1996 Nov; 22(4):605-18. PubMed ID: 8951809. Abstract: Bacillus subtilis contains three chromosomally encoded type I signal peptidases (SipS, SipT and SipU), which remove signal peptides from secretory precursor proteins. In the present study the biological function of SipS and the regulation of its synthesis were analysed. Unlike the type I signal peptidase of Escherichia coli, SipS was essential neither for protein secretion nor viability of the cell. However, in the absence of SipS the rate of processing of several preproteins was reduced, and four of the seven major secreted proteins of B. subtilis were hardly detectable in the growth medium. Surprisingly, the processing of Bacillus amyloliquefaciens alpha-amylase and the secretion of at least two endogenous B. subtilis proteins was improved in the absence of SipS. These findings indicate that the substrate preference of SipS differs from that of SipT and SipU, and that SipS is an important factor determining the efficiency of protein secretion in B. subtilis. SipS is transcribed in a growth phase- and medium-dependent manner. In minimal medium, the growth phase-dependent transcription of sipS is controlled by the DegS-DegU two-component regulatory system, indicating that the expression of sipS is regulated by the same factors that control the expression of most genes for secreted degradative enzymes. Our observations suggest that B. subtilis can modulate its capacity and specificity for protein secretion through the controlled expression of sipS.[Abstract] [Full Text] [Related] [New Search]