These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. Author: Kennedy ED, Rizzuto R, Theler JM, Pralong WF, Bastianutto C, Pozzan T, Wollheim CB. Journal: J Clin Invest; 1996 Dec 01; 98(11):2524-38. PubMed ID: 8958215. Abstract: Nutrient-stimulated insulin secretion is dependent upon the generation of metabolic coupling factors in the mitochondria of the pancreatic B cell. To investigate the role of Ca2+ in mitochondrial function, insulin secretion from INS-1 cells stably expressing the Ca2+-sensitive photoprotein aequorin in the appropriate compartments was correlated with changes in cytosolic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]m). Glucose and KCl, which depolarize the cell membrane, as well as the Ca2+-mobilizing agonist, carbachol (CCh), cause substantial increases in [Ca2+]m which are associated with smaller rises in [Ca2+]c. The L-type Ca2+-channel blocker, SR7037, abolished the effects of glucose and KCl while attenuating the CCh response. Glucose-induced increases in [Ca2+]m, [Ca2+]c, and insulin secretion all demonstrate a pronounced initial peak followed by a sustained plateau. All three parameters are increased synergistically when glucose and CCh are combined. Finally, [Ca2+]m, [Ca2+]c, and insulin secretion also display desensitization phenomena following repeated additions of the three stimuli. The high sensitivity of [Ca2+]m to Ca2+ influx and the desensitization-resensitization effects can be explained by a model in which the mitochondria of INS-1 cells are strategically located to sense Ca2+ influx through plasma membrane Ca2+ channels. In conclusion, the correlation of [Ca2+]m and [Ca2+]c with insulin secretion may indicate a fundamental role for Ca2+ in the adaptation of oxidative metabolism to the generation of metabolic coupling factors and the energy requirements of exocytosis.[Abstract] [Full Text] [Related] [New Search]