These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enforced expression of Bcl-XS induces differentiation and sensitizes chronic myelogenous leukemia-blast crisis K562 cells to 1-beta-D-arabinofuranosylcytosine-mediated differentiation and apoptosis.
    Author: Ray S, Bullock G, Nuñez G, Tang C, Ibrado AM, Huang Y, Bhalla K.
    Journal: Cell Growth Differ; 1996 Dec; 7(12):1617-23. PubMed ID: 8959329.
    Abstract:
    Human chronic myelogenous leukemia-blast crisis K562 cells have been demonstrated to be relatively resistant to antileukemic drug-induced apoptosis. This has been attributed to the activity of p210bcr-abl tyrosine kinase present in the K562 cells, which is known to suppress drug-induced apoptosis. Recently, K562 cells have been shown to express the antiapoptosis Bcl-xL but not Bcl-2 proteins. To investigate the contribution of Bcl-xL toward resistance to drug-induced apoptosis, we created K562/Bcl-xS and K562/neo cells by electroporating the expression plasmids pSFFVneo-Bcl-xS and pSFFVneo, containing the bcl-xS and neomycin resistance genes, respectively, into K562 cells. K562/Bcl-xS but not K562/neo cells expressed the bcl-xS mRNA and p19Bcl-xS protein. In contrast, both cell types expressed equivalent levels of Bcl-xL, Bax, Bcl-2, Myc, retinoblastoma, p21cbor-abl, and p145abl proteins. A significant increase in the hemoglobin levels was observed in the K562/Bcl-xS compared with the K562/neo cells (P < 0.05). In addition, K562/Bcl-xS cells were significantly more sensitive than K562/neo cells to undergoing erythroid differentiation induced by low-dose 1-beta-D-arabinofuranosylcytosine (ara-C) and hexamethyl bisacetamide (P < 0.05), but not by all-trans-retinoic acid. Low-dose ara-C- or hexamethyl bisacetamide-induced differentiation was not associated with apoptosis of K562/Bcl-xS or K562/neo cells. Low-dose ara-C-induced erythroid differentiation was accompanied by conversion of the retinoblastoma protein to predominantly its underphosphorylated isoform as well as by down-regulation of Myc levels in K562/Bcl-xS and K562/neo cells. Importantly, exposure to high-dose ara-C (HIDAC; 100 microM ara-C for 4 h) caused internucleosomal DNA fragmentation and the morphological features of apoptosis in K562/Bcl-xS cells. These effects were modestly enhanced by cotreatment with HIDAC plus herbimycin A. In contrast, K562/neo cells were completely resistant to HIDAC- and herbimycin A-induced apoptosis. These results indicate that the expression of Bcl-xS induces erythroid differentiation and partially sensitizes chronic myelogenous leukemia-blast crisis-derived K562 cells to ara-C-induced differentiation and apoptosis.
    [Abstract] [Full Text] [Related] [New Search]