These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversal of P-glycoprotein-associated multidrug resistance by ivermectin.
    Author: Pouliot JF, L'Heureux F, Liu Z, Prichard RK, Georges E.
    Journal: Biochem Pharmacol; 1997 Jan 10; 53(1):17-25. PubMed ID: 8960059.
    Abstract:
    P-Glycoprotein (P-gp) causes a multidrug resistance (MDR) phenotype in tumour cells. In some cancers, the expression of P-gp has been correlated with low clinical response to chemotherapy and survival of patients. Previous studies have shown that certain lipophilic drugs bind to P-gp and reverse the MDR phenotype of tumour cells. In this study, we extend that list of compounds and present evidence for the capacity of a potent and clinically safe anthelmintic, ivermectin (IVM), as an MDR-reversing drug. Using a highly drug-resistant human cell line, we compared IVM with other MDR-reversing agents and showed that IVM is 4- and 9-fold more potent than cyclosporin A and verapamil, respectively. The capacity of IVM to inhibit iodoaryl-azidoprazosin photolabeling of P-gp is consistent with direct binding to P-gp. Studies showed that [3H]IVM binding to membranes from resistant cells is specific and saturable with KD and Bmax values of 10.6 nM and 19.8 pmol/mg, respectively. However, while cyclosporin A or vinblastine inhibited [3H]IVM binding to membranes from drug-resistant but not drug-sensitive cells, neither verapamil nor colchicine had any effect. Furthermore, both IVM and cyclosporin A and, to a lesser extent, verapamil also inhibited [3H]vinblastine binding to membranes from drug-resistant cells. Drug transport studies showed that [3H]IVM is a substrate for the P-gp drug efflux pump. However, it was transported less efficiently by P-gp than [3H]vinblastine. Moreover, only cyclosporin A was effective in potentiating the accumulation of [3H]IVM in drug-resistant cells. Taken together, the high efficiency of MDR reversal by IVM combined with its low toxicity are consistent with the properties of an ideal MDR-reversing agent.
    [Abstract] [Full Text] [Related] [New Search]