These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reversal of hypertension and endothelial dysfunction in deoxycorticosterone-NaCl-treated rats by high-Ca2+ diet. Author: Mäkynen H, Kähönen M, Wu X, Wuorela H, Pörsti I. Journal: Am J Physiol; 1996 Apr; 270(4 Pt 2):H1250-7. PubMed ID: 8967363. Abstract: We tested the effect of high-Ca2+ diet on blood pressure and responses of mesenteric arterial rings in vitro in established deoxycorticosterone (DOC)-NaCl hypertension. Ca2+ supplementation (2.5%) of Wistar rats, which was commenced 8 wk after initiation of DOC-NaCl treatment (Ca(2+)-DOC group), reversed the development of hypertension, whereas in animals ingesting a normal diet (1.1% Ca2+; DOC group) blood pressure continued to rise until the end of the 12-wk study. In norepinephrine-precontracted arterial rings, relaxations to acetylcholine (ACh) and sodium nitroprusside were attenuated in the DOC group, but these responses were significantly improved by Ca2+ supplementation. The nitric oxide (NO) synthesis inhibitor NG-nitro-L-arginine methyl ester, in the presence of diclofenac, totally abolished ACh-induced relaxations in the DOC group but only attenuated them in the Ca(2+)-DOC group. The remaining relaxation was further inhibited by apamin, an inhibitor of Ca(2+)-activated K+ channels, and practically abolished after blockade of ATP-dependent K+ channels by glyburide. Interestingly, when endothelium-dependent hyperpolarization was prevented using precontractions induced by KCl, no differences were found in relaxations to ACh between the groups. In conclusion, high-Ca(2+) diet effectively reduced blood pressure in DOC-NaCl hypertension and concomitantly enhanced arterial relaxation. Because the relaxations to ACh in the Ca(2+)-DOC group were augmented in the absence and presence of NO synthesis inhibition but not under conditions of prevented hyperpolarization, these enhanced relaxations could be attributed to promoted endothelium-dependent hyperpolarization in the Ca(2+)-supplemented animals.[Abstract] [Full Text] [Related] [New Search]