These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acetylcholine and caffeine activate Cl- and suppress K+ conductances in human bronchial smooth muscle.
    Author: Janssen LJ.
    Journal: Am J Physiol; 1996 May; 270(5 Pt 1):L772-81. PubMed ID: 8967511.
    Abstract:
    The conductance changes underlying agonist-evoked depolarization in human airway smooth muscle (ASM) were examined using single ASM cells liberated enzymatically from noncarcinomatous bronchi and studied using patch-clamp techniques. Step commands to potentials at or more positive than the resting membrane potential evoked outward current, which was predominantly delayed rectifier K+ current with some Ca(2+)-dependent K+ current Caffeine (5 mM) evoked depolarization and contraction lasting several minutes. During voltage clamp at -60 mV, caffeine evoked inward current with a latency of approximately equal to 1 s, mean amplitude of 320 +/- 65 pA, and a duration of approximately equal to 5 s (even though agonist application exceeded this duration). With the use of the perforated-path configuration, these responses could be evoked repeatedly at 4-min intervals for up to 30 min; rupture of the membrane and dialysis of the cytosol, however, abrogated the responses to caffeine. The current was outwardly rectifying with mean reversal potential (Vrev) of -31 +/- 4 mV. When K+ conductances were blocked by Ca+, the current-voltage (I-V) relationship was linear (i.e., an outwardly-rectifying component was eliminated) and Vrev was displaced in the positive direction to +2 +/- 1 mV. Changes in the CL- equilibrium potential were accompanied by a displacement of Vrev in a manner predicted by the Nernst equation for a Cl- current. The effects of caffeine were mimicked by acetylcholine; in addition, acetylcholine and caffeine each occluded the response to the other agonist. Spasmogens also caused a prolonged suppression of K+ currents (both Ca(2+)--dependent and delayed rectifier). We conclude that, in human ASM, acetylcholine and caffeine cause a transient activation of Ca(2+)--dependent Cl- current (due to release of internal Ca2+) and prolonged suppression of K+ currents, leading to depolarization and contraction.
    [Abstract] [Full Text] [Related] [New Search]