These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Early postnatal changes in sarcoplasmic reticulum calcium transport function in spontaneously hypertensive rats. Author: Freestone N, Singh J, Krause EG, Vetter R. Journal: Mol Cell Biochem; 1996; 163-164():57-66. PubMed ID: 8974040. Abstract: This comparative study investigates the relationship between sarcoplasmic reticulum (SR) calcium(Ca2+)-ATPase transport activity and phospholamban (PLB) phosphorylation in whole cardiac homogenates of spontaneously hypertensive rats (SHR) and their parent, normotensive Wistar Kyoto (WKY) strain during early postnatal development at days 1, 3, 6, 12 and at day 40 to ascertain any difference in SR Ca2+ handling before the onset of hypertension. At day 1, the rate of homogenate oxalate-supported Ca2+ uptake was significantly higher in SHR than in WKY (0.25 +/- 0.02 vs 0.12 +/- 0.01 nmoles Ca2+/mg wet ventricular weight/min, respectively; p < 0.001). This interstrain difference disappeared with further developmental increase in SR Ca2+ transport. Western Blot analysis and a semiquantitative ELISA did not reveal any difference in the amount of immunoreactive PLB (per mg of total tissue protein) between strains at any of the ages studied. In addition, levels of phosphorylated PLB formed in vitro in the presence of radiolabelled ATP and catalytic (C) subunit of protein kinase A did not differ between SHR and WKY at days 1, 3, 6 and 12. At day 40, C subunit-catalyzed formation of 32P-PLB was reduced by 66% (p < 0.001) in SHR when compared to age-matched WKY. In the early postnatal period between day 1 and 12 SR Ca(2+)-transport values were linearly related to the respective 32P-PLB levels of both SHR and WKY rats. The results indicate that cardiac SR of SHR can sequester Ca2+ at a much higher rate immediately after birth compared to WKY rats. The disappearance of this interstrain difference with further development suggests that some endogenous neuroendocrine or nutritional factor(s) from the hypertensive mother may exert an influence upon the developing heart in utero resulting in a transiently advanced maturation of the SR Ca2+ transport function in SHR pups at the time of birth.[Abstract] [Full Text] [Related] [New Search]