These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of calcium channels in human erythroblasts by erythropoietin.
    Author: Cheung JY, Zhang XQ, Bokvist K, Tillotson DL, Miller BA.
    Journal: Blood; 1997 Jan 01; 89(1):92-100. PubMed ID: 8978281.
    Abstract:
    Erythropoietin (Epo) induces a dose-dependent increase in intracellular free Ca2+ ([Ca2+]i) in human erythroblasts, which is dependent on extracellular Ca2+ and blocked by high doses of nifedipine or Ni2+. In addition, pretreatment of human erythroblasts with mouse antihuman erythropoietin receptor antibody but not mouse immunopure IgG blocked the Epo-induced [Ca2+]i increase, indicating the specificity of the Ca2+ response to Epo stimulation. In this study, the erythropoietin-regulated calcium channel was identified by single channel recordings. Use of conventional whole cell patch-clamp failed to detect Epo-induced whole cell Ca2+ current. To minimize washout of cytosolic constituents, we next used nystatin perforated patch, but did not find any Epo-induced whole cell Ca2+ current. Using Ba2+ (30 mmol/L) as charge carrier in cell-attached patches, we detected single channels with unitary conductance of 3.2 pS, reversal potential of +72 mV, and whose unitary current (at +10 mV) increased monotonically with increasing Ba2+ concentrations. Channel open probability did not appreciably change over the voltage range (-50 to +30 mV) tested. Epo (2 U/mL) increased both mean open time (from 4.27 +/- 0.75 to 11.15 +/- 1.80 ms) and open probability (from 0.26 +/- 0.06 to 2.56 +/- 0.59%) of this Ba(2+)-permeable channel. Our data strongly support the conclusion that the Epo-induced [Ca2+]i increase in human erythroblasts is mediated via Ca2+ entry through a voltage-independent Ca2+ channel.
    [Abstract] [Full Text] [Related] [New Search]