These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. Author: Pohlmeyer K, Paap BK, Soll J, Wedel N. Journal: Plant Mol Biol; 1996 Dec; 32(5):969-78. PubMed ID: 8980547. Abstract: Higher-plant chloroplast NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) is composed of two different nuclear-encoded subunits, GAPA and GAPB, forming the highly active heterotetrameric A2B2 enzyme. The main difference between these two subunits is a C-terminal extension of about 30 amino acid residues of GAPB. We present cDNA clones for a nuclear-encoded chloroplast protein from pea, spinach and tobacco, which we have named CP12. The mature protein consists of only 74, 75 and 76 amino acid residues, respectively and contains two domains with significant homology to the C-terminal extension of GAPB. Affinity chromatography approaches reveal also a specific interaction between CP12 and chloroplast GAPDH. Northern blot analysis indicates that CP12 is, like plastid GAPDH, expressed in green and also in etiolated leaves. Further homology is observed between CP12 and ORF3, an open reading frame located in the hox gene cluster of Anabaena variabilis. This gene cluster encodes the subunits of the bidirectional NADP(+)-dependent [NiFeS] dehydrogenase. We propose therefore a common evolutionary origin of CP12 and higher-plant chloroplast GAPDH subunit GAPB from the cyanobacterial ORF3.[Abstract] [Full Text] [Related] [New Search]