These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular interactions of a semisynthetic glycopeptide antibiotic with D-alanyl-D-alanine and D-alanyl-D-lactate residues.
    Author: Allen NE, LeTourneau DL, Hobbs JN.
    Journal: Antimicrob Agents Chemother; 1997 Jan; 41(1):66-71. PubMed ID: 8980756.
    Abstract:
    LY191145 is an N-alkylated glycopeptide antibiotic (the p-chlorobenzyl derivative of LY264826) with activity against vancomycin-susceptible and -resistant bacteria. Similar to vancomycin, LY191145 inhibited polymerization of peptidoglycan when muramyl pentapeptide served as a substrate but not when muramyl tetrapeptide was used, signifying a substrate-dependent mechanism of inhibition. Examination of ligand binding affinities for LY191145 and the effects of this agent on R39 D,D-carboxypeptidase action showed that, similar to vancomycin, LY191145 had an 800-fold greater affinity for N,N'-diacetyl-L-Lys-D-Ala-D-Ala than for N,N'-diacetyl-L-Lys-D-Ala-D-Lac. The antibacterial activity of LY191145 was antagonized by N,N'-diacetyl-L-Lys-D-Ala-D-Ala, but the molar excess required for complete suppression exceeded that needed to suppress inhibition by vancomycin. LY191145 is strongly dimerized and the p-chlorobenzyl side chain facilitates interactions with bacterial membranes. These findings are consistent with a mechanism of inhibition where interactions between antibiotic and D-Ala-D-Ala or D-Ala-D-Lac residues depend on intramolecular effects occurring at the subcellular target site.
    [Abstract] [Full Text] [Related] [New Search]