These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Growth and differentiation signals regulated by the M-CSF receptor.
    Author: Rohrschneider LR, Bourette RP, Lioubin MN, Algate PA, Myles GM, Carlberg K.
    Journal: Mol Reprod Dev; 1997 Jan; 46(1):96-103. PubMed ID: 8981370.
    Abstract:
    The normal proto-oncogene c-fms encodes the macrophage growth factor (M-CSF) receptor involved in growth, survival, and differentiation along the monocyte-macrophage lineage of hematopoietic cell development. A major portion of our research concerns unraveling the temporal, molecular, and structural features that determine and regulate these events. Previous results indicated that c-fms can transmit a growth signal as well as a signal for differentiation in the appropriate cells. To investigate the role of the Fms tyrosine autophosphorylation sites in proliferation vs. differentiation signaling, four of these sites were disrupted and the mutant receptors expressed in a clone derived from the myeloid FDC-P1 cell line. These analyses revealed that: (1) none of the four autophosphorylation sites studied (Y697, Y706, Y721, and Y807) are essential for M-CSF-dependent proliferation of the FDC-P1 clone; (2) Y697, Y706, and Y721 sites, located in the kinase insert region of Fms, are not necessary for differentiation but their presence augments this process; and (3) the Y807 site is essential for the Fms differentiation signal: its mutation totally abrogates the differentiation of the FDC-P1 clone and conversely increases the rate of M-CSF-dependent proliferation. This suggests that the Y807 site may control a switch between growth and differentiation. The assignment of Y807 as a critical site for the reciprocal regulation of growth and differentiation may provide a paradigm for Fms involvement in leukemogenesis, and we are currently investigating the downstream signals transmitted by the tyrosine-phosphorylated 807 site. In Fms-expressing FDC-P1 cells, M-CSF stimulation results in the rapid (30 sec) tyrosine phosphorylation of Fms on the five cytoplasmic tyrosine autophosphorylation sites, and subsequent tyrosine phosphorylation of several host cell proteins occurs within 1-2 min. Complexes are formed between Fms and other signal transduction proteins such as Grb2, Shc, Sos1, and p85. In addition, a new signal transduction protein of 150 kDa is detectable in the FDC-P1 cells. The p150 is phosphorylated on tyrosine, and forms a complex with Shc and Grb2. The interaction with Shc occurs via a protein tyrosine binding (PTB) domain at the N-terminus of Shc. The p150 is not detectable in Fms signaling within fibroblasts, yet the PDGF receptor induces the tyrosine phosphorylation of a similarly sized protein. In hematopoietic cells, this protein is involved in signaling by receptors for GM-CSF, IL-3, KL, MPO, and EPO. We have now cloned a cDNA for this protein and found at least one related family member. The related family member is a Fanconia Anemia gene product, and this suggests potential ways the p150 protein may function in Fms signaling.
    [Abstract] [Full Text] [Related] [New Search]