These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Response of human osteoblasts to implant materials: integrin-mediated adhesion. Author: Gronowicz G, McCarthy MB. Journal: J Orthop Res; 1996 Nov; 14(6):878-87. PubMed ID: 8982129. Abstract: The initial interaction of the human osteoblast-like cell line Saos-2 with orthopaedic implant materials was analyzed to determine the mechanism by which these cells adhere to implant surfaces. Saos-2 cells were allowed to attach to disks composed of the orthopaedic implant materials Tivanium (Ti6A14V) and Zimaloy (CoCrMo) and to control disks of glass and plastic. Serum had no effect on the number of cells that attached to Tivanium and Zimaloy at 4 or 24 hours but did increase the number of cells that attached to glass at 24 hours. Collagen synthesis was determined by [3H]proline incorporation into collagenase-digestible protein and noncollagen protein. A significant increase of 19% was found for collagen synthesized in cells cultured on Zimaloy for 24 hours compared with glass, with no differences on Tivanium and plastic. However, collagenase-digestible protein and noncollagen protein were increased the most (204 and 198%, respectively) on Tivanium compared with glass. To determine if integrins were involved in cell attachment to implant materials, the peptide GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), which blocks integrin receptors through the Arg-Gly-Asp sequence, was added to the cells in serum-free medium. This peptide inhibited cell adhesion by 28% on Tivanium and 40% on Zimaloy but had no effect on glass and plastic. The control peptide GRADSP (Gly-Arg-Ala-Asp-Ser-Pro) had no effect on adhesion. Inhibition of protein synthesis and enzymatic removal of surface proteins did not affect the ability of Arg-Gly-Asp peptides to inhibit cell attachment to the implant materials. These results suggest that integrins are able to bind directly to Tivanium and Zimaloy. Western blot analysis of integrin protein demonstrated changes in many integrin subunits, depending on the substrate to which cells attached. In particular, the beta 1 integrin subunit was increased 3.8 to 9.5-fold at 24 hours. To determine specifically which integrins may be involved in adhesion, antibodies to integrins were added. An antibody to the fibronectin receptor, alpha 5 beta 1, significantly inhibited binding of cells to Tivanium by 63% and to Zimaloy by 49% and had no effect on glass. The vitronectin receptor antibody, alpha v beta 3/beta 5, did not alter cell adhesion. In conclusion, osteoblast-like cells appear to be capable of attaching directly to implant materials through integrins. The type of substrate determines which integrins and extracellular matrix proteins are expressed by osteoblasts. These data provide information on how implant materials may affect osteoblast differentiation and bone growth.[Abstract] [Full Text] [Related] [New Search]