These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Author: Batchelor AM, Garthwaite J. Journal: Nature; 1997 Jan 02; 385(6611):74-7. PubMed ID: 8985249. Abstract: In the classical view, a central neuron integrates incoming synaptic information by simple algebraic summation of the resultant bioelectrical signals that coincide in time. The voltage dependence of the NMDA (N-methyl-D-aspartate) type of ionotropic glutamate receptor endows neurons with an additional tool that allows one synaptic input to influence another, providing, again, that the two are active simultaneously. Here we identify a new mechanism by which non-coincident signals generated by different synaptic inputs are integrated. The device serves to regulate neuronal excitation through G-protein-coupled, metabotropic glutamate receptors (mGluRs) in a powerful and specific manner. We show that, in cerebellar Purkinje cells, a single activation of the climbing-fibre input markedly potentiates mGluR-mediated excitation at parallel-fibre synapses. The potentiation results from a transient rise in cytosolic Ca2+ which is 'memorized' in such a way that it promotes excitation through mGluRs for about two minutes. A Ca2+-transient is also effective if imposed up to two seconds after parallel-fibre stimulation. By allowing temporally and spatially dispersed synaptic signals to be assimilated, this mechanism adds a new element to the computational power of central neurons.[Abstract] [Full Text] [Related] [New Search]