These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutamate AMPA receptors in the fascia dentata of human and kainate rat hippocampal epilepsy.
    Author: Babb TL, Mathern GW, Leite JP, Pretorius JK, Yeoman KM, Kuhlman PA.
    Journal: Epilepsy Res; 1996 Dec; 26(1):193-205. PubMed ID: 8985700.
    Abstract:
    The present study examined the relationship between the patterns and densities of glutamate AMPA receptor sub-units GluR1 and GluR2/3 in the molecular layer of the fascia dentata and aberrant mossy fiber neoinnervation in human and kainate rat hippocampal epilepsy. Because AMPA sub-units modulate the fast glutamate synaptic transmission, we hypothesized that the AMPA receptor densities would be related to the glutamate-secreting mossy fibers, which could then contribute to seizure generation. In human hippocampal epilepsy, we found that the immunocytochemical labeling of GluR1 and GluR2/3 dendrites was positively related to the densities and spatial locations of the densest, aberrant neo-Timm stained supragranular mossy fibers. We used quantitative densitometry for the mossy fibers. However, the relatively faint and punctate immunocytochemical staining of the receptors did not allow true quantitative densitometry of the dendritic trees because in human epilepsy granule cell densities were decreased on average 50% of normal. Nevertheless, visual observations did confirm spatial relations between dense fascia dentata inner molecular layer mossy fibers and dense AMPA receptor staining. In the outer molecular layer, the mossy fibers were present only in the lower portion, were not densely-stained, and the AMPA receptors were only faintly-labeled. Nevertheless, outer molecular layer AMPA receptor densities were usually present more distally than were the mossy fibers. Experiments were done using intrahippocampal kainate epileptic rats to test the time courses for the changes in mossy fibers and AMPA receptors. The upregulation of inner and outer molecular layer AMPA receptors occurred maximally within 5 days post-kainate injection, prior to any mossy fiber supragranular ingrowth. One hundred and eighty days after ipsilateral kainate the AMPA receptors were increased bilaterally in the inner and outer molecular layers despite the fact that the contralateral aberrant supragranular mossy fibers were minor in comparison to the dense ipsilateral mossy fiber hyperinnervation. These results suggest that in hippocampal epilepsy AMPA receptor numbers increase throughout the length of the molecular layer dendrites; however the AMPA receptor densities are greater in rough relation to the greatest aberrant mossy fiber presynaptic inputs. Interestingly, the receptor upregulation precedes the mossy fiber ingrowth and may play a role in initiating axonal sprouting or in maintaining the aberrant mossy fiber synapses.
    [Abstract] [Full Text] [Related] [New Search]