These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heparan sulfate proteoglycans play a dual role in regulating fibroblast growth factor-2 mitogenic activity in human breast cancer cells.
    Author: Delehedde M, Deudon E, Boilly B, Hondermarck H.
    Journal: Exp Cell Res; 1996 Dec 15; 229(2):398-406. PubMed ID: 8986623.
    Abstract:
    The human breast cancer cell lines MCF-7 and MDA-MB-231 differ in their responsiveness to fibroblast growth factor-2 (FGF-2). This growth factor stimulates proliferation in well-differentiated MCF-7 cells, whereas the less well-differentiated MDA-MB-231 cells are insensitive to this molecule. To investigate the potential regulation of FGF-2 mitogenic activity by heparan sulfate proteoglycans (HSPG), we have treated human breast cancer cells by glycosaminoglycan degrading enzymes or a metabolic inhibitor of proteoglycan sulfation: sodium chlorate. The interaction between FGF-2 and proteoglycans was assayed by examining the binding of 125I-FGF-2 to breast cancer cell cultures as well as to cationic membranes loaded with HSPG. Using MCF-7 cells, we showed that heparinase treatment inhibited FGF-2 binding to HSPG and completely abolished FGF-2 induced growth; chlorate treatment of MCF-7 cells decreased FGF-2 binding to HSPG and cell responsiveness in a dose-dependent manner. This demonstrates a requirement of adequately sulfated HSPG for FGF-2 growth-promoting activity on MCF-7 cells. In highly invasive MDA-MB-231 cells which produce twice as much HSPG as MCF-7 cells and which are not normally responsive to exogenously added FGF-2, chlorate treatment decreased FGF-2 binding to HSPG and induced FGF-2 mitogenic effect. This chlorate effect was dose dependent and observed at concentrations of 10-30 mM; higher chlorate concentrations completely abolished the FGF-2 effect. This shows that the HSPG level of sulfation can also negatively regulate the biological activity of FGF-2. Taken together, these results demonstrate a crucial role for HSPG in both positive and negative control of FGF-2 mitogenic activity in breast cancer cell proliferation.
    [Abstract] [Full Text] [Related] [New Search]