These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of trace elements on calcium phosphate formation by matrix vesicles.
    Author: Sauer GR, Wu LN, Iijima M, Wuthier RE.
    Journal: J Inorg Biochem; 1997 Jan; 65(1):57-65. PubMed ID: 8987171.
    Abstract:
    The effects of two inhibitors, fluoride (F-) and zinc (Zn2+), were studied on the formation of mineral by matrix vesicles (MV) in an in vitro system. Kinetically, mineral formation by MV incubated in a synthetic cartilage lymph (SCL) is characterized by three phases: a lag period, a period of rapid uptake, and finally a period of slow uptake. Zn2+ at > or = 5 microM completely inhibited MV mineralization; at < or = 1 microM, it had little effect on rate of ion uptake, but delayed conversion of an OCP-like intermediate into hydroxyapatite (OHAp). F- at > or = 10 microM reduced the rate of rapid uptake by MV and caused the OCP-like precursor to convert to OHAp. When synthetic OCP was seeded into SCL, mineralization ensued and OHAp became the dominant phase. With Zn2+ present, OCP-like features persisted longer; with F-, the OCP-like features were lost more rapidly. When ACP was seeded into SCL, OHAp formed; Zn2+ at < or = 1 microM caused OCP-like mineral to form. Our findings indicate that Zn2+ stabilizes a noncrystalline precursor in MV regulating the length of the lag period; Zn2+ also favors the formation of an OCP-like intermediate whose growth accounts for the rapid uptake phase. This OCP-like phase appears to nucleate formation of OHAp by MV.
    [Abstract] [Full Text] [Related] [New Search]