These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of an intracellular beta-glucosidase purified from the cellobiose-fermenting yeast Candida wickerhamii. Author: Skory CD, Freer SN, Bothast RJ. Journal: Appl Microbiol Biotechnol; 1996 Nov; 46(4):353-9. PubMed ID: 8987723. Abstract: An intracellular beta-glucosidase was isolated from the cellobiose-fermenting yeast, Candida wickerhamii. Production of the enzyme was stimulated under aerobic growth, with the highest level of production in a medium containing cellobiose as a carbohydrate source. The molecular mass of the purified protein was approximately 94 KDa. It appeared to exist as a dimeric structure with a native molecular mass of about 180 KDa. The optimal pH ranged from 6.0 to 6.5 with p-nitrophenyl beta-D-glucopyranoside (NpGlc) as a substrate. The optimal temperature for short-term (15-min) assays was 35 degrees C, while temperature-stability analysis revealed that the enzyme was labile at temperatures of 28 degrees C and above. Using NpGlc as a substrate, the enzyme was estimated to have a Km of 0.28 mM and a Vmax of 525 mumol product min-1 mg protein-1. Similar to the extracellular beta-glucosidase produced by C. wickerhamii, this enzyme resisted end-product inhibition by glucose, retaining 58% of its activity at 100 mM glucose. The activity of the enzyme was highest against aryl beta-1,4-glucosides. However, p-nitrophenyl xylopyranoside, lactose, cellobiose, and trehalose also served as substrates for the purified protein. Activity of the enzyme was stimulated by long-chain n-alkanols and inhibited by ethanol, 2-propanol, and 2-butanol. The amino acid sequence, obtained by Edman degradation analysis, suggests that this beta-glucosidase is related to the family-3 glycosyl hydrolases.[Abstract] [Full Text] [Related] [New Search]