These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain.
    Author: Sim LJ, Hampson RE, Deadwyler SA, Childers SR.
    Journal: J Neurosci; 1996 Dec 15; 16(24):8057-66. PubMed ID: 8987831.
    Abstract:
    Chronic Delta9-tetrahydrocannabinol (Delta9-THC) administration produces tolerance to cannabinoid effects, but alterations in signal transduction that mediate these changes are not yet known. The present study uses in vitro autoradiography of agonist-stimulated [35S]GTPgammaS binding to localize cannabinoid receptor-activated G-proteins after chronic Delta9-THC treatment. Cannabinoid (WIN 55212-2)-stimulated [35S]GTPgammaS binding was performed in brain sections from rats treated chronically with 10 mg/kg Delta9-THC for 21 d. Control animals received saline or an acute injection of Delta9-THC. Acute Delta9-THC treatment had no effect on basal or WIN 55212-2-stimulated [35S]GTPgammaS binding. After chronic Delta9-THC treatment, net WIN 55212-2-stimulated [35S]GTPgammaS binding was reduced significantly (up to 70%) in most brain regions, including the hippocampus, caudate-putamen, perirhinal and entorhinal cortex, globus pallidus, substantia nigra, and cerebellum. In contrast, chronic Delta9-THC treatment had no effect on GABAB-stimulated [35S]GTPgammaS binding. In membranes and brain sections, Delta9-THC was a partial agonist, stimulating [35S]GTPgammaS by only 20% of the level stimulated by WIN 55212-2 and inhibiting WIN 55212-2-stimulated [35S]GTPgammaS at high concentrations. Because the EC50 of WIN 55212-2-stimulated [35S]GTPgammaS binding and the KD of cannabinoid receptor binding were unchanged by chronic Delta9-THC treatment, the partial agonist actions of Delta9-THC did not produce the decrease in cannabinoid-stimulated [35S]GTPgammaS binding. These results suggest that profound desensitization of cannabinoid-activated signal transduction mechanisms occurs after chronic Delta9-THC treatment.
    [Abstract] [Full Text] [Related] [New Search]