These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Author: Huang SG, Klingenberg M. Journal: Biochemistry; 1996 Dec 24; 35(51):16806-14. PubMed ID: 8988019. Abstract: The uncoupling protein (UCP) from brown adipose tissue mitochondria possesses H+ and Cl- transport activities [reviewed in Klingenberg, M. (1990) Trends Biochem. Sci. 15, 108-112]. Being a member of a mitochondrial carrier family, the transport of H+ and Cl- is carrier-like, i.e., much slower as compared to channels. Here we report that UCP reconstituted into giant liposomes displays stable chloride channel properties under patch-clamp conditions. The transport inhibitors (GTP, GDP, ATP, and ADP) also inhibit this channel in a reversible way, showing that the channel activity is associated with UCP. The slightly inward-rectifying chloride channel has a unit conductance of approximately 75 pS in symmetrical 100 mM KCl and closes at high positive potentials on the matrix side of UCP. Channel gatings switch from slow open-closure transitions to fast flickerings as the holding potential increases over +60 mV. Substitution experiments reveal a strong discrimination against cations [P(Cl-)/P(K+) approximately 17] and a permeability ratio order of Cl- > Br- > F- > SCN- > I- > NO3- > SO4(2-) > HPO4(2-) > gluconate. Nucleotide inhibition studies indicate that 70% UCP molecules had its matrix side oriented outside in the giant liposomes. Fatty acids, pH, divalent cations (Ca2+ and Mg2+), and mersalyl do not influence these Cl- currents. The Cl- channel can be blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) from the matrix side of UCP. The data are consistent with a dimer consisting of two monomeric 75-pS Cl- channels or with a monomeric 150-pS channel having a 50% subconductance state. The channel current increases with Cl- concentration showing a typical saturation curve with Km approximately 63 mM and gmax approximately 120 pS (100 mM KCl in the pipet). The Cl- conductance measured under these conditions is 6 orders of magnitude higher than the Cl- transport activity reported earlier, suggesting that the UCP has the potential of behaving as an anion channel.[Abstract] [Full Text] [Related] [New Search]