These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method. Author: Yao Y, Wang Y, Pei Y, Zhu W, Barbour RL. Journal: J Opt Soc Am A Opt Image Sci Vis; 1997 Jan; 14(1):325-42. PubMed ID: 8988624. Abstract: We presents a Born; iterative method, for reconstructing optical properties of turbid media by means of frequency-domain data. The approach is based on iterative solution of a linear perturbation equation, which is derived from the integral from of the Helmholtz wave equation for photon-density waves in each iteration the total field and the associated weight matrix are recalculated based on the previous reconstructed image. We then obtain a new estimate by solving the updated perturbation equation. The forward solution, also based on a Helmholtz equation, is obtained by a multigrid finite difference method. The inversion is carried out through a Tikhonov regularized optimization process by the conjugate gradient descent method. Using this method, we first reconstruct the distribution of the complex wave numbers in a test medium, from which the absorption and the scattering distributions are then derived. Simulation results with two-dimensional test media have shown that this method can yield quantitatively (in terms of coefficient valued) as well as qualitatively (in terms of object location and shape) accurate reconstructions of absorption and scattering distributions in cases in which the first-order Born approximation cannot work well. Both full-angle and limited-angle measurement schemes have been simulated to examine the effect of the location of detectors and sources. The robustness of the algorithm to noise has also been evaluated.[Abstract] [Full Text] [Related] [New Search]