These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway.
    Author: Ruhfus B, Kinne RK.
    Journal: Kidney Blood Press Res; 1996; 19(6):317-24. PubMed ID: 8990043.
    Abstract:
    To further characterize the hypotonicity-activated efflux pathways for the organic osmolytes taurine and myo-inositol in inner medullary collecting duct (IMCD) cells tracer fluxes of taurine and myo-inositol were investigated. The time course of activation of both fluxes after exposure of cells isolated at 600 mosm to a hypotonic medium (300 mosm by omission of sucrose) was identical with a major increase of release within the first 10 min. All 'anion channel blockers' employed proved to be strong inhibitors of both fluxes. Inhibition of myo-inositol efflux by 0.5 mM NPPB and 0.1 mM dideoxyforskolin was not significantly different from that of taurine efflux (87.7 +/- 11.4 compared to 94.6 +/- 4.6% and 98.8 +/- 2.0 compared to 95.9 +/- 3.7%). However, SITS (0.5 and 0.01 mM), DIDS (0.5 and 0.01 mM), and niflumic acid (0.5 mM) inhibited myo-inositol efflux more strongly than taurine efflux. The respective values were 65.4 +/- 4 vs. 42.9 +/- 3.6% for 0.01 mM SITS, 65.7 +/- 4.2 vs. 45.8 +/- 2.0% for 0.01 mM DIDS, and 79.5 +/- 3.5 vs. 54.2 +/- 2.5% for 0.5 mM niflumic acid. Taurine as well as myo-inositol efflux were decreased to a similar extent by 10 mM extracellular ATP (26.9 +/- 6.3 vs. 29.8 +/- 17.7% inhibition), by 10 mM extracellular cAMP (52.8 +/- 9.8 vs. 60.1 +/- 17.2% inhibition) and by reduction of the intracellular ATP content employing 2-deoxy-D-glucose (31.9 +/- 5.9 vs. 40.4 +/- 13.6% inhibition). In polarized primary cell cultures taurine and myo-inositol were released during a hypotonic shock primarily across the basal-lateral membrane, the ratio of basolateral versus apical efflux was 4.1 for taurine and 3.9 for myo-inositol. Apical fluxes were more sensitive to 0.01 mM SITS or DIDS; this was particularly evident for apical myo-inositol efflux which was inhibited by 0.01 mM SITS by 84.1 +/- 5.9% compared to 43.5 +/- 13.1% inhibition of the basolateral efflux. Thus, taurine and myo-inositol efflux show to a great extent a similar cellular distribution, intracellular regulation and pharmacological inhibition profile. This similarity suggests that the two osmolytes share an efflux pathway that might be identical with the swelling-activated taurine conductance described previously. Additional minor pathways can, however, not be excluded.
    [Abstract] [Full Text] [Related] [New Search]