These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiprogestin inhibition of cell cycle progression in T-47D breast cancer cells is accompanied by induction of the cyclin-dependent kinase inhibitor p21. Author: Musgrove EA, Lee CS, Cornish AL, Swarbrick A, Sutherland RL. Journal: Mol Endocrinol; 1997 Jan; 11(1):54-66. PubMed ID: 8994188. Abstract: Progestin antagonists inhibit the proliferation of progesterone receptor-positive cells, including breast cancer cells, by G1 phase-specific actions, but the molecular targets involved are not defined. Reduced phosphorylation of pRB, a substrate for G1 cyclin-dependent kinases (CDKs) in vivo, was apparent after 9 h treatment of T-47D breast cancer cells with the antiprogestins RU 486 or ORG 31710, accompanying changes in S phase fraction. Although the abundance of cyclin D1, Cdk4, and Cdk6 did not decrease cyclin D1-associated kinase activity was reduced by approximately 50% at 9-18 h. Similarly, cyclin E-associated kinase activity decreased by approximately 60% at 12-24 h in the absence of significant changes in the abundance of cyclin E and Cdk2. The CDK inhibitor p21 increased in mRNA and protein abundance and was present at increased levels in cyclin D1 and cyclin E complexes at times when their kinase activity was decreased. Increased p21 protein abundance was observed in another antiprogestin-sensitive cell line, BT 474, but not in two breast cancer cell lines insensitive to antiprogestins. These data suggest increased p21 abundance and concurrent inhibition of CDK activity as a mechanism for antiprogestin induction of growth arrest. Antiprogestin effects on proliferation were markedly reduced after ectopic expression of cyclin D1, indicating that inhibition of cyclin D1 function is a critical element in antiprogestin inhibition of proliferation. However, these data also implicate regulation of cyclin E function in antiprogestin regulation of cell cycle progression.[Abstract] [Full Text] [Related] [New Search]