These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction.
    Author: Stephens JM, Lee J, Pilch PF.
    Journal: J Biol Chem; 1997 Jan 10; 272(2):971-6. PubMed ID: 8995390.
    Abstract:
    A number of studies have demonstrated that tumor necrosis factor-alpha (TNF-alpha) is associated with profound insulin resistance in adipocytes and may also play a critical role in the insulin resistance of obesity and non-insulin-dependent diabetes mellitus. Reports on the mechanism of TNF-alpha action have been somewhat contradictory. GLUT4 down-regulation has been implicated as a possible cause of insulin resistance as has been the reduced kinase function of the insulin receptor. Here we examine the effects of tumor necrosis factor on the protein components thought to be involved in insulin-stimulated glucose transport in adipocytes, namely the insulin receptor, its major substrate IRS-1, and the insulin responsive glucose transporter GLUT4. Prolonged exposure (72-96 h) of 3T3-L1 adipocytes to TNF-alpha causes a substantial reduction (>80%) in IRS-1 and GLUT4 mRNA and protein as well as a lesser reduction (>50%) in the amount of the insulin receptor. Nevertheless, the remaining proteins appear to be biochemically indistinguishable from those in untreated adipocytes. Both the insulin receptor and IRS-1 are tyrosine-phosphorylated to the same extent in response to acute insulin stimulation following cellular TNF-alpha exposure. Furthermore, the ability of the insulin receptor to phosphorylate exogenous substrate in the test tube is also normal following its isolation from TNF-alpha-treated cells. These results are confirmed by the reduced but obvious level of insulin-dependent glucose transport and GLUT4 translocation observed in TNF-alpha-treated adipocytes. We conclude that the insulin resistance of glucose transport in 3T3-L1 adipocytes exposed to TNF-alpha for 72-96 h results from a reduced amount in requisite proteins involved in insulin action. These results are consistent with earlier studies indicating that TNF-alpha reduces the transcriptional activity of the GLUT4 gene in murine adipocytes, and reduced mRNA transcription of a number of relevant genes may be the general mechanism by which TNF-alpha causes insulin resistance in adipocytes.
    [Abstract] [Full Text] [Related] [New Search]