These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways.
    Author: Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM.
    Journal: J Biol Chem; 1997 Jan 10; 272(2):1395-401. PubMed ID: 8995450.
    Abstract:
    Shear stress differentially regulates production of many vasoactive factors at the level of gene expression in endothelial cells that may be mediated by mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK) and N-terminal Jun kinase (JNK). Here we show, using bovine aortic endothelial cells (BAEC), that shear stress differentially regulates ERK and JNK by mechanisms involving Gi2 and pertussis toxin (PTx)-insensitive G-protein-dependent pathways, respectively. Shear activated ERK with a rapid, biphasic time course (maximum by 5 min and basal by 30-min shear exposure) and force dependence (minimum and maximum at 1 and 10 dyn/cm2 shear stress, respectively). PTx treatment prevented shear-dependent activation of ERK1/2, consistent with a Gi-dependent mechanism. In contrast, JNK activity was maximally turned on by a threshold level of shear force (0.5 dyn/cm2 or higher) with a much slower and prolonged time course (requiring at least 30 min to 4 h) than that of ERK. Also, PTx had no effect on shear-dependent activation of JNK. To further define the shear-sensitive ERK and JNK pathways, vectors expressing hemagglutinin epitope-tagged ERK (HA-ERK) or HA-JNK were co-transfected with other vectors by using adenovirus-polylysine in BAEC. Expression of the mutant (alpha)i2(G203), antisense G(alpha)i2 and a dominant negative Ras (N17Ras) prevented shear-dependent activation of HA-ERK, while that of (alpha)i2(G204) and antisense (alpha)i3 did not. Expression of a Gbeta/gamma scavenger, the carboxyl terminus of beta-adrenergic receptor kinase (betaARK-ct), and N17Ras inhibited shear-dependent activation of HA-JNK. Treatment of BAEC with genistein prevented shear-dependent activation of ERK and JNK, indicating the essential role of tyrosine kinase(s) in both ERK and JNK pathways. These results provide evidence that 1) Gi2-protein, Ras, and tyrosine kinase(s) are upstream regulators of shear-dependent activation of ERK and 2) that shear-dependent activation of JNK is regulated by mechanisms involving Gbeta/gamma, Ras, and tyrosine kinase(s).
    [Abstract] [Full Text] [Related] [New Search]